“抗原提呈”的版本间的差异
来自医学百科
(建立内容为“<div style="padding: 0 2%; line-height: 1.8; color: #1e293b; font-family: 'Helvetica Neue', Helvetica, 'PingFang SC', Arial, sans-serif; background-color: #ffffff…”的新页面) |
|||
| 第3行: | 第3行: | ||
<div style="margin-bottom: 20px; border-bottom: 1px solid #f1f5f9; padding-bottom: 15px;"> | <div style="margin-bottom: 20px; border-bottom: 1px solid #f1f5f9; padding-bottom: 15px;"> | ||
<p style="font-size: 1.1em; margin: 10px 0; color: #334155;"> | <p style="font-size: 1.1em; margin: 10px 0; color: #334155;"> | ||
| − | <strong>抗原提呈</strong>(Antigen | + | <strong>抗原提呈</strong>(Antigen Presentation)是机体免疫应答的核心起始环节。该过程涉及[[抗原提呈细胞]](APCs)对内源性或外源性蛋白质的摄取、蛋白水解及加工,随后将其转化为具有免疫活性的[[抗原肽]],并与[[主要组织相容性复合体]](MHC)结合呈递至细胞表面,供 [[T细胞受体]](TCR)特异性识别。在[[肿瘤免疫学]]中,抗原提呈的完整性是实现[[免疫循环]](Immunity-Cancer Cycle)的首要前提,其效率受 [[HLA]] 多态性及肿瘤微环境内[[免疫抑制]]信号的深度调节。 |
</p> | </p> | ||
</div> | </div> | ||
| 第10行: | 第10行: | ||
<div style="padding: 18px 15px; color: #ffffff; background: linear-gradient(135deg, #1e3a8a 0%, #3b82f6 100%); text-align: center; cursor: pointer;"> | <div style="padding: 18px 15px; color: #ffffff; background: linear-gradient(135deg, #1e3a8a 0%, #3b82f6 100%); text-align: center; cursor: pointer;"> | ||
| − | <div style="font-size: 1.25em; font-weight: bold; letter-spacing: 1px;">抗原提呈 · | + | <div style="font-size: 1.25em; font-weight: bold; letter-spacing: 1px;">抗原提呈 · 生物学全息图</div> |
<div style="font-size: 0.75em; opacity: 0.8; margin-top: 4px; white-space: nowrap;">Antigen Presentation (点击展开详细数据)</div> | <div style="font-size: 0.75em; opacity: 0.8; margin-top: 4px; white-space: nowrap;">Antigen Presentation (点击展开详细数据)</div> | ||
</div> | </div> | ||
| 第20行: | 第20行: | ||
[[文件:Antigen_Presentation_MHC_System.png|220px|抗原提呈分子机制]] | [[文件:Antigen_Presentation_MHC_System.png|220px|抗原提呈分子机制]] | ||
</div> | </div> | ||
| − | <div style="font-size: 0.85em; color: #64748b; margin-top: 12px; font-weight: 600;"> | + | <div style="font-size: 0.85em; color: #64748b; margin-top: 12px; font-weight: 600;">内源性与外源性抗原加工路径</div> |
</div> | </div> | ||
<table style="width: 100%; border-spacing: 0; border-collapse: collapse; font-size: 0.95em;"> | <table style="width: 100%; border-spacing: 0; border-collapse: collapse; font-size: 0.95em;"> | ||
<tr> | <tr> | ||
| − | <th style="text-align: left; padding: 12px 18px; border-bottom: 1px solid #f1f5f9; color: #64748b; font-weight: 600; width: 35%; background-color: #fcfdfe;"> | + | <th style="text-align: left; padding: 12px 18px; border-bottom: 1px solid #f1f5f9; color: #64748b; font-weight: 600; width: 35%; background-color: #fcfdfe;">核心复合物</th> |
| − | <td style="padding: 12px 18px; border-bottom: 1px solid #f1f5f9; color: #1e293b;"> | + | <td style="padding: 12px 18px; border-bottom: 1px solid #f1f5f9; color: #1e293b;">pMHC (Peptide-MHC)</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
| − | <th style="text-align: left; padding: 12px 18px; border-bottom: 1px solid #f1f5f9; color: #64748b; font-weight: 600; background-color: #fcfdfe;"> | + | <th style="text-align: left; padding: 12px 18px; border-bottom: 1px solid #f1f5f9; color: #64748b; font-weight: 600; background-color: #fcfdfe;">专业细胞</th> |
| − | <td style="padding: 12px 18px; border-bottom: 1px solid #f1f5f9; color: #1e293b;"> | + | <td style="padding: 12px 18px; border-bottom: 1px solid #f1f5f9; color: #1e293b;">DC, B-cell, Mφ</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
| − | <th style="text-align: left; padding: 12px 18px; color: #64748b; font-weight: 600; background-color: #fcfdfe;"> | + | <th style="text-align: left; padding: 12px 18px; color: #64748b; font-weight: 600; background-color: #fcfdfe;">技术前沿</th> |
| − | <td style="padding: 12px 18px; color: #1e293b; font-weight: bold;">[[ | + | <td style="padding: 12px 18px; color: #1e293b; font-weight: bold;">[[免疫肽组学]]</td> |
</tr> | </tr> | ||
</table> | </table> | ||
| 第40行: | 第40行: | ||
</div> | </div> | ||
| − | <h2 style="background: linear-gradient(to right, #1e3a8a, #ffffff); color: #ffffff; padding: 8px 15px; border-radius: 4px; font-size: 1.2em; margin-top: 35px;"> | + | <h2 style="background: linear-gradient(to right, #1e3a8a, #ffffff); color: #ffffff; padding: 8px 15px; border-radius: 4px; font-size: 1.2em; margin-top: 35px;">抗原提呈的双路径模型与交叉提呈机制</h2> |
<p style="margin: 15px 0;"> | <p style="margin: 15px 0;"> | ||
| − | + | 抗原提呈通过高度精密的时空控制,确保免疫系统能准确识别“自身”与“非己”: | |
</p> | </p> | ||
<ul style="padding-left: 20px; color: #475569;"> | <ul style="padding-left: 20px; color: #475569;"> | ||
| − | <li style="margin-bottom: 12px;"><strong>MHC-I | + | <li style="margin-bottom: 12px;"><strong>MHC-I 路径(经典的内源性途径):</strong> 胞质内合成的抗原(如肿瘤蛋白)经[[蛋白酶体]]降解,通过 [[TAP]] 转运至内质网并负载至 MHC-I 分子,提呈给 [[CD8+ T细胞]],介导细胞毒性杀伤。</li> |
| − | <li style="margin-bottom: 12px;"><strong>MHC-II | + | <li style="margin-bottom: 12px;"><strong>MHC-II 路径(经典的外源性途径):</strong> APCs 胞吞外源抗原,在[[溶酶体]]内降解,与 MHC-II 分子结合后呈递给 [[CD4+ T细胞]],启动[[体液免疫]]或辅助细胞应答。</li> |
| − | <li style="margin-bottom: 12px;"><strong>[[交叉提呈]] (Cross-presentation):</strong> | + | <li style="margin-bottom: 12px;"><strong>[[交叉提呈]] (Cross-presentation):</strong> 树突状细胞(DCs)具备将捕获的外源性肿瘤抗原通过 MHC-I 路径呈递给 CD8+ T 细胞的特殊能力。这是诱导初级 [[CTL应答]] 并在实体瘤中实现治疗获益的决定性环节。</li> |
</ul> | </ul> | ||
| − | + | <h2 style="background: linear-gradient(to right, #1e3a8a, #ffffff); color: #ffffff; padding: 8px 15px; border-radius: 4px; font-size: 1.2em; margin-top: 35px;">肿瘤免疫中的提呈障碍与干预对比</h2> | |
| − | + | <h3 style="color: #1e40af; border-bottom: 2px solid #dbeafe; display: inline-block; padding-bottom: 3px; margin-top: 20px;">1. MHC 丢失变异与免疫逃逸</h3> | |
| − | |||
| − | |||
| − | <h3 style="color: #1e40af; border-bottom: 2px solid #dbeafe; display: inline-block; padding-bottom: 3px; margin-top: 20px;">1. MHC | ||
<p style="margin: 10px 0;"> | <p style="margin: 10px 0;"> | ||
| − | + | 肿瘤细胞常通过基因或表观遗传手段使抗原提呈链条断裂: | |
</p> | </p> | ||
<ul style="padding-left: 20px; color: #475569;"> | <ul style="padding-left: 20px; color: #475569;"> | ||
| − | <li style="margin-bottom: 10px;"><strong>B2M | + | <li style="margin-bottom: 10px;"><strong>[[B2M]] 基因突变:</strong> 导致 MHC-I 无法正确折叠和膜表达。</li> |
| − | <li style="margin-bottom: 10px;"><strong>[[ | + | <li style="margin-bottom: 10px;"><strong>[[LOH]] (杂合性丢失):</strong> 特定 [[HLA]] 等位基因的丢失使得特定的肿瘤[[新抗原]]无法被提呈,导致[[TCR-T]]治疗失效。</li> |
</ul> | </ul> | ||
| − | <h3 style="color: #1e40af; border-bottom: 2px solid #dbeafe; display: inline-block; padding-bottom: 3px; margin-top: 20px;">2. | + | <h3 style="color: #1e40af; border-bottom: 2px solid #dbeafe; display: inline-block; padding-bottom: 3px; margin-top: 20px;">2. 提升提呈效率的临床干预手段</h3> |
<div style="overflow-x: auto; margin: 25px 0;"> | <div style="overflow-x: auto; margin: 25px 0;"> | ||
<table style="width: 85%; margin: 0 auto; border-collapse: collapse; border: 1px solid #e2e8f0; font-size: 0.9em; text-align: left;"> | <table style="width: 85%; margin: 0 auto; border-collapse: collapse; border: 1px solid #e2e8f0; font-size: 0.9em; text-align: left;"> | ||
<tr style="background-color: #f8fafc; border-bottom: 2px solid #1e3a8a;"> | <tr style="background-color: #f8fafc; border-bottom: 2px solid #1e3a8a;"> | ||
| − | <th style="padding: 12px; border: 1px solid #e2e8f0; color: #1e3a8a;"> | + | <th style="padding: 12px; border: 1px solid #e2e8f0; color: #1e3a8a;">干预策略</th> |
| − | <th style="padding: 12px; border: 1px solid #e2e8f0; color: #1e3a8a;"> | + | <th style="padding: 12px; border: 1px solid #e2e8f0; color: #1e3a8a;">机制核心</th> |
| − | <th style="padding: 12px; border: 1px solid #e2e8f0; color: #1e3a8a;"> | + | <th style="padding: 12px; border: 1px solid #e2e8f0; color: #1e3a8a;">适用场景</th> |
</tr> | </tr> | ||
<tr> | <tr> | ||
| − | <td style="padding: 10px; border: 1px solid #e2e8f0; font-weight: bold;">[[IFN-γ]] | + | <td style="padding: 10px; border: 1px solid #e2e8f0; font-weight: bold;">[[IFN-γ]] 增敏</td> |
| − | <td style="padding: 10px; border: 1px solid #e2e8f0;">上调 MHC | + | <td style="padding: 10px; border: 1px solid #e2e8f0;">上调 MHC-I 及其加工组件</td> |
| − | <td style="padding: 10px; border: 1px solid #e2e8f0;"> | + | <td style="padding: 10px; border: 1px solid #e2e8f0;">提呈下调型肿瘤</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
| − | <td style="padding: 10px; border: 1px solid #e2e8f0; font-weight: bold;"> | + | <td style="padding: 10px; border: 1px solid #e2e8f0; font-weight: bold;">DC 细胞疫苗</td> |
| − | <td style="padding: 10px; border: 1px solid #e2e8f0;"> | + | <td style="padding: 10px; border: 1px solid #e2e8f0;">体外负载抗原肽激活专业提呈</td> |
| − | <td style="padding: 10px; border: 1px solid #e2e8f0;"> | + | <td style="padding: 10px; border: 1px solid #e2e8f0;">诱导从无到有的免疫响应</td> |
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
| − | <h2 style="background: linear-gradient(to right, #1e3a8a, #ffffff); color: #ffffff; padding: 8px 15px; border-radius: 4px; font-size: 1.2em; margin-top: 35px;">2025 | + | <h2 style="background: linear-gradient(to right, #1e3a8a, #ffffff); color: #ffffff; padding: 8px 15px; border-radius: 4px; font-size: 1.2em; margin-top: 35px;">2025 全息视角:AI 驱动的抗原提呈预测</h2> |
<p style="margin: 15px 0;"> | <p style="margin: 15px 0;"> | ||
| − | + | 抗原提呈的研究正由定性分析转向全量数字化的**[[免疫肽组学]]**预测: | |
</p> | </p> | ||
<ul style="padding-left: 20px; color: #475569;"> | <ul style="padding-left: 20px; color: #475569;"> | ||
| − | <li style="margin-bottom: 10px;"><strong>[[ | + | <li style="margin-bottom: 10px;"><strong>[[全息图谱]]整合:</strong> 利用质谱数据与[[深度学习]]算法(如 NetMHCpan-2025版)精准识别肿瘤表面真实存在的 peptide-HLA 组合。</li> |
| − | <li style="margin-bottom: 10px;"><strong> | + | <li style="margin-bottom: 10px;"><strong>空间提呈强度:</strong> 通过[[空间组学]]识别 APCs 与效应 T 细胞在组织内的共定位模式,动态评估提呈事件的真实发生概率。</li> |
</ul> | </ul> | ||
| − | <div style="font-size: 0.85em; line-height: 1.8; color: # | + | <div style="font-size: 0.85em; line-height: 1.8; color: #64748b; margin-top: 40px; border-top: 2px solid #f1f5f9; padding-top: 15px; background-color: #f9fafb; padding: 15px;"> |
| − | [1] | + | <strong>【 参考文献与点评 】</strong><br> |
| − | [2] Sahin U, Türeci Ö. "Personalized vaccines for cancer immunotherapy." <em>Science</em>. | + | [1] <strong>Neefjes J, et al. (2011).</strong> <em>"Towards a systems understanding of MHC class I and MHC class II antigen presentation."</em> <strong>Nature Reviews Immunology</strong>. <br> |
| + | <span style="color: #94a3b8;">[点评:经典综述,系统构建了抗原提呈的双路径模型及分子转运机制。]</span><br> | ||
| + | |||
| + | [2] <strong>Sahin U, Türeci Ö. (2018/2024 更新版).</strong> <em>"Personalized vaccines for cancer immunotherapy."</em> <strong>Science</strong>. <br> | ||
| + | <span style="color: #94a3b8;">[点评:论证了抗原提呈是新抗原疫苗设计的基石,强调了 HLA 亲和力预测的重要性。]</span><br> | ||
| + | |||
| + | [3] <strong>Gettinger S, et al. (2017).</strong> <em>"Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors."</em> <strong>Cancer Discovery</strong>. <br> | ||
| + | <span style="color: #94a3b8;">[点评:明确了抗原提呈障碍是导致免疫检查点抑制剂耐药的核心临床证据。]</span><br> | ||
| + | |||
| + | [4] <strong>Jhunjhunwala S, et al. (2021).</strong> <em>"Antigen presentation in cancer: insights into mechanisms and barriers."</em> <strong>Nature Reviews Cancer</strong>. <br> | ||
| + | <span style="color: #94a3b8;">[点评:详述了肿瘤微环境如何物理性和生化性地抑制 APCs 的提呈功能。]</span><br> | ||
| + | |||
| + | [5] <strong>Embgenbroich M, Burgdorf S. (2018).</strong> <em>"Current Concepts of Antigen Cross-Presentation."</em> <strong>Frontiers in Immunology</strong>. <br> | ||
| + | <span style="color: #94a3b8;">[点评:深度解析了树突状细胞交叉提呈的亚细胞区室演变机制。]</span> | ||
</div> | </div> | ||
| 第104行: | 第114行: | ||
<div style="background-color: #1e3a8a; color: #ffffff; text-align: center; font-weight: bold; padding: 12px;">抗原提呈相关导航</div> | <div style="background-color: #1e3a8a; color: #ffffff; text-align: center; font-weight: bold; padding: 12px;">抗原提呈相关导航</div> | ||
<div style="padding: 15px; background: #ffffff; line-height: 2; text-align: center;"> | <div style="padding: 15px; background: #ffffff; line-height: 2; text-align: center;"> | ||
| − | [[ | + | [[MHC分子结构]] • [[树突状细胞功能]] • [[交叉提呈路径]] • [[癌症疫苗]] • [[TCR亲和力预测]] |
</div> | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
2025年12月28日 (日) 16:54的版本
抗原提呈(Antigen Presentation)是机体免疫应答的核心起始环节。该过程涉及抗原提呈细胞(APCs)对内源性或外源性蛋白质的摄取、蛋白水解及加工,随后将其转化为具有免疫活性的抗原肽,并与主要组织相容性复合体(MHC)结合呈递至细胞表面,供 T细胞受体(TCR)特异性识别。在肿瘤免疫学中,抗原提呈的完整性是实现免疫循环(Immunity-Cancer Cycle)的首要前提,其效率受 HLA 多态性及肿瘤微环境内免疫抑制信号的深度调节。
抗原提呈的双路径模型与交叉提呈机制
抗原提呈通过高度精密的时空控制,确保免疫系统能准确识别“自身”与“非己”:
- MHC-I 路径(经典的内源性途径): 胞质内合成的抗原(如肿瘤蛋白)经蛋白酶体降解,通过 TAP 转运至内质网并负载至 MHC-I 分子,提呈给 CD8+ T细胞,介导细胞毒性杀伤。
- MHC-II 路径(经典的外源性途径): APCs 胞吞外源抗原,在溶酶体内降解,与 MHC-II 分子结合后呈递给 CD4+ T细胞,启动体液免疫或辅助细胞应答。
- 交叉提呈 (Cross-presentation): 树突状细胞(DCs)具备将捕获的外源性肿瘤抗原通过 MHC-I 路径呈递给 CD8+ T 细胞的特殊能力。这是诱导初级 CTL应答 并在实体瘤中实现治疗获益的决定性环节。
肿瘤免疫中的提呈障碍与干预对比
1. MHC 丢失变异与免疫逃逸
肿瘤细胞常通过基因或表观遗传手段使抗原提呈链条断裂:
2. 提升提呈效率的临床干预手段
| 干预策略 | 机制核心 | 适用场景 |
|---|---|---|
| IFN-γ 增敏 | 上调 MHC-I 及其加工组件 | 提呈下调型肿瘤 |
| DC 细胞疫苗 | 体外负载抗原肽激活专业提呈 | 诱导从无到有的免疫响应 |
2025 全息视角:AI 驱动的抗原提呈预测
抗原提呈的研究正由定性分析转向全量数字化的**免疫肽组学**预测:
- 全息图谱整合: 利用质谱数据与深度学习算法(如 NetMHCpan-2025版)精准识别肿瘤表面真实存在的 peptide-HLA 组合。
- 空间提呈强度: 通过空间组学识别 APCs 与效应 T 细胞在组织内的共定位模式,动态评估提呈事件的真实发生概率。
【 参考文献与点评 】
[1] Neefjes J, et al. (2011). "Towards a systems understanding of MHC class I and MHC class II antigen presentation." Nature Reviews Immunology.
[点评:经典综述,系统构建了抗原提呈的双路径模型及分子转运机制。]
[2] Sahin U, Türeci Ö. (2018/2024 更新版). "Personalized vaccines for cancer immunotherapy." Science.
[点评:论证了抗原提呈是新抗原疫苗设计的基石,强调了 HLA 亲和力预测的重要性。]
[3] Gettinger S, et al. (2017). "Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors." Cancer Discovery.
[点评:明确了抗原提呈障碍是导致免疫检查点抑制剂耐药的核心临床证据。]
[4] Jhunjhunwala S, et al. (2021). "Antigen presentation in cancer: insights into mechanisms and barriers." Nature Reviews Cancer.
[点评:详述了肿瘤微环境如何物理性和生化性地抑制 APCs 的提呈功能。]
[5] Embgenbroich M, Burgdorf S. (2018). "Current Concepts of Antigen Cross-Presentation." Frontiers in Immunology.
[点评:深度解析了树突状细胞交叉提呈的亚细胞区室演变机制。]